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Abstract
We show that electron transport in disordered quantum wires can be described
by a modified Cooperon equation, which coincides in form with the Dirac
equation for the massive fermions in a (1 + 1)-dimensional system. In this new
formalism, we calculate the direct electric current induced by electromagnetic
(EM) fields in quasi-one-dimensional rings. This current changes sign, from
diamagnetic to paramagnetic, depending on the amplitude and frequency of the
time-dependent external EM field.

Impurity scattering and quantum coherence of the electron wavefunction are the two key
concepts in the transport phenomena of mesoscopic conductors. Conduction electrons are
weakly localized by the coherent back-scattering due to impurities, resulting in the effect
commonly known as ‘weak localization’. The conventional theory of weak localization [1]
assumes deeply diffusive systems—i.e., the electron mean free path l is much shorter than
the system size. Recently, experimental studies of transport phenomena in non-diffusive
systems have also become important, primarily due to the recent progress in fabrication of clean
nanostructures. In this paper, we present a formalism of the weak-localization phenomena,
valid also in non-diffusive regimes. In particular, we consider electromagnetic (EM) field-
induced current in mesoscopic rings, which is currently an important issue as regards the sign
of the measured persistent current [2–4].

Nonlinear properties of field-induced current in mesoscopic rings have been studied in
great detail for the case of the deeply diffusive regime [5, 6]. This problem has recently gained
attention again due to its relevance to the problem of anomalously large persistent current [2–4]
and low-temperature saturation of decoherence time [7–9]. We investigate the same physical
model without using the diffusion approximation, which is valid only for l � L. The particular
system considered in this paper is a quantum wire in the ring geometry with finite width much
larger than the Fermi wavelength but smaller than the phase coherence length. We show that
rectified direct currents in mesoscopic rings induced by high-frequency magnetic fields have
oscillating sign depending on the frequency. This result sheds some light on the recent puzzle
of the measured sign of the induced DC in mesoscopic quantum rings [3, 4, 9].
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We start with the conventional weak-localization theory. Central to quantum transport in
disordered conductors is the concept of the so-called ‘Cooperon’, the particle–particle diffusion
propagator [1, 10]. The Cooperon is a two-particle Green function averaged over disorder
configurations. In the presence of an EM field A, the Cooperon is the retarded classical
propagator of a modified diffusion equation:[

∂

∂ t
− D

(
∇r − 2ie

h̄c
A

)2

+
1

τφ

]
C(r, t; r′, t ′) = δ(r − r′)δ(t − t ′), (1)

where D = vFl/d is the diffusion coefficient for the d-dimensional system, vF is the Fermi
velocity, and τφ is the phase coherence time. This expression in equation (1) has proven to be
useful in many cases, since one can easily consider geometrical effects through the boundary
condition of the equation. However, it is worthwhile to note that equation (1) is only valid in the
deeply diffusive regime. Even its original derivation hinged on the realization that the Fourier
transformed Cooperon C(Q, ω) could be approximated as [1, 11] C(Q, ω) ≈ 1/(−iω+ DQ2)

when

Ql � 1 and ωτ � 1, (2)

where τ = l/vF is the elastic mean free time.
When ω is not too small compared to 1/τ , one relies on the semiclassical Boltzmann

theory [12] instead of equation (1) for the Cooperon; the semiclassical Boltzmann theory is
free from the above constraining approximation in equation (2). In this theory [12], the electron
motion is characterized by a function F(r,v, t; r′,v′, t ′) which is a conditional probability
density describing the probability of the particle initially at position r′ at time t ′ with velocity
v′ being found at the position r at time t with the velocity v. The intrinsic velocity of the
particle is fixed as the Fermi velocity, |v| = |v′| = vF . The conditional probability density F
is the propagator of the distribution function f (r,v, t) which satisfies the Boltzmann equation[

∂

∂ t
+ v ·

(
∇r − 2ie

h̄c
A

)]
f = − f − f0

τ
− f

τφ

(3)

f0(r, t) = 1

N
∑

v

f (r,v, t) (4)

where N is the number of available values of v.
From this point onwards, we will consider a mesoscopic quantum wire with finite width W

in two dimensions. The boundary condition is that f (r,v, t) is zero if vy �= 0 at the boundary
of the wire r = x x̂ ± (W/2)ŷ. This condition is due to the fact that the electron number is
conserved in the electron scattering with the boundary. We impose another condition: that the
width of the wire W is small enough that W/τφ � vF . In this case, the main contribution to the
electron propagator F is essentially the zero mode in the transverse direction, i.e., there is no
y-dependence in F . To be consistent with the boundary condition, vy = 0 at the boundaries,
we have only two values of v in the longitudinal direction, either vF x̂ or −vF x̂. The equation
of the propagator for the Boltzmann equation (3) can be rewritten as a differential equation in
a 2-by-2 matrix form:[

∂

∂ t
+ vFσz

(
∂

∂x
− 2ie

h̄c
A

)
+

1

2τ
(1 − σx) +

1

τφ

]
F(x, t; x ′, t ′) = δ(x − x ′)δ(t − t ′), (5)

where

F(x, t; x ′, t ′) =
(

F(x, vF , t; x ′, vF , t ′) F(x, vF , t; x ′,−vF , t ′)
F(x,−vF , t; x ′, vF , t ′) F(x,−vF , t; x ′,−vF , t ′)

)
. (6)

As is clear in equation (6), each component of the above matrix formalism denotes the
relevant chirality of the moving particle. Since the Cooperon C(x, t; x ′, t ′) is also a probability
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density giving the probability for the particle initially at (x ′, t ′) to be found at x after time
t − t ′ [10, 12], we get the Cooperon from F by summing all final chiral states and averaging
over initial chiral states: C(x, t; x ′, t ′) = 1

2

∑
i j Fi j(x, t; x ′, t ′). In matrix form, we get

C(x, t; x ′, t ′) = Tr

[
1 + σx

2
F(x, t; x ′, t ′)

]
. (7)

Note that the main equation in (5) coincides in form with a Dirac equation for massive
particles in (1 + 1) dimensions. Interestingly, it is already well known that the conventional
Cooperon equation (1) coincides in form with the Schrödinger equation with imaginary time
t ←→ −it for a particle with mass m ′ ←→ h̄/2D. To be more explicit, let us consider the
following relativistic propagator Grel for the Dirac equation for the particle with mass m ′ in
(1 + 1) dimensions:[

iγ 0

(
∂

∂ t
+ i

m ′c2

h̄

)
− icγ 1

(
∂

∂x
− 2ie

h̄c
A

)
+

m ′c2

h̄

]
Grel = iγ 0δ(x − x ′)δ(t − t ′), (8)

where {γ µ, γ ν} = 2gµν and gµν = diag(1,−1) for µ, ν = 0, 1. The term i m′c2

h̄ within the

first parentheses is included to compensate for the time-evolution factor exp(−i m′c2

h̄ t) due to
the rest-mass energy which is not included in the Schrödinger equation. Let us perform the
following transformations, while keeping the electron coupling constant 2ie

h̄c to the EM field:

t → −it, c → ivF , m ′ → h̄/2D; (9)

then we get equation (5) using the Pauli spin matrices γ 0 = σx and γ 1 = iσy .
The physical origin of the transformation c → ivF in equation (9) is rendered clear by

noting that the mean speed of a particle in a disordered conductor is limited by the Fermi
velocity while the speed of a particle in the relativistic theory cannot exceed the speed of light.
Instead of σx , chosen as γ 0 in the above, a general form of equation (7) can be used based on
γ -matrices; C(x, t; x ′, t ′) = Tr[( 1+γ 0

2 )F(x, t; x ′, t ′)]. The appearance of (1 + γ 0)/2 in front
of F seems to be natural, because (1 + γ 0)/2 in relativistic mechanics is a projection operator,
which projects out negative energy states in the rest reference frame [13].

Pursuing further the similarity between the present theory and relativistic theory, let us note
how the chiral symmetry is broken in each theory. In relativistic quantum mechanics in (1 + 1)
dimensions, the particle’s mass breaks the chiral symmetry. (In other words, since the massive
particle moves slower than c, there exist reference frames where a right-moving particle can
be seen as a left-moving particle.) In mesoscopic quantum wires, the chirality is broken due
to the presence of the electron–impurity scattering. These two different mechanisms, which
break the chiral symmetry in each theory, are connected to each other as clearly manifested by
the correspondence shown in equation (9); m ′c2 −→ −h̄v2

F/2D = −h̄/2τ .
In the absence of external fields, F is a translationally invariant quantity, which

allows us to solve equation (5) using Fourier transformation: F(x, t; x ′, t ′) =
(1/2π)2

∫
dQ

∫
dω F(Q, ω)eiQ(x−x′ )−iω(t−t ′). For τφ � τ , F(Q, ω) is given by

F(Q, ω) = 1

−iω + DQ2 − ω2τ

(
1/2 − iωτ − il Q 1/2

1/2 1/2 − iωτ + il Q

)
. (10)

The Cooperon in momentum space is written as

C(Q, ω) = Tr
1 + σx

2
F(Q, ω) = 1 − iωτ

−iω + DQ2 − ω2τ
. (11)

This result coincides with the Cooperon obtained as the total sum of the Dyson series in the
Green function approach without the approximations in equation (2) [14].
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In the presence of a time-dependent EM field, A = A(t)x̂, the ‘Cooperon matrix’ F
explicitly depends on time t (Ft = Ft (x, η; x ′, η′)), which is obtained by solving the following
equation with a time-dependent field At(η) = A(t − η/2) + A(t + η/2) [1]:[

∂

∂η
+ vFσz

(
∂

∂x
− ie

h̄c
At(η)

)
+

1 − σx

2τ
+

1

τ ∗
φ

]
Ft = δ(x − x ′)δ(η − η′). (12)

Here, we include the phenomenological dephasing rate 1/τ ∗
φ , which originates from

sources other than the external EM field. The weak-localization current IW L (t) [1] (the
quantum correction to the classical ohmic current) is given by

〈IW L (t)〉 = Cβe2 D

h̄

∫ ∞

0
dη Tr

[
1 + σx

2
Ft−η/2(x, η; x,−η)

]
E(t − η), (13)

where 〈· · ·〉 represents the disorder average and E(t) = − 1
c

∂ A(t)
∂ t is the applied electric field.

Cβ is dictated by the Dyson symmetry class: Cβ = −4/π (2/π) when the spin–orbit scattering
is negligible (important) with the characteristic length Lso � L (Lso � L) [1, 9].

Now, let us apply equations (12) and (13) to calculate electric currents induced by the EM
field in mesoscopic rings. While the usual equilibrium persistent current is induced by a static
magnetic flux φ = ĀL only, the rectified direct current is a dynamical phenomenon originating
from the time-dependent conductivity of the ring [5, 9]. Suppose the EM field, given by
A(t) = Ā+a(t), is applied to the quantum ring with perimeter L,where a(t) = 1

2 (aωe−iωt +c.c.)
and Ā is time independent. An electric field E(t) = 1

2 (Eωe−iωt +c.c.) is induced along the ring,
where Eω = iωaω/c. The DC component of the electric current I0 = 〈IW L (t)〉 is of interest,
and it is obtained by averaging the disorder-averaged current 〈IW L (t)〉 over time t .

Let us first investigate the case of weakly time-dependent field so that the associated
magnetic flux φω is much smaller than the unit flux quantum φ0 = h/|e|c:

φω = |Eω|Lc/ω � φ0. (14)

We calculate up to the first-order perturbation term of at−η/2(η
′) = a(t − η/2 − η′/2) + a(t −

η/2 + η′/2) in Ft−η/2:

Ft−η/2(x, η; x,−η) = F(0)

t−η/2(x, η; x,−η) +
∫

dx ′
∫ η

−η

dη′ F(0)

t−η/2(x, η; x ′, η′)

×
(

vF
ie

h̄c
σzat−η/2(η

′)
)

F(0)

t−η/2(x ′, η′; x,−η) + · · · , (15)

where F(0)

t−η/2(x ′, η′; x,−η) denotes the F-matrix in the absence of a time-dependent field:
aω = 0. After a long but straightforward calculation, we get the expression for the DC:

I0 = Cβ

|e|
τD

(
φω

φ0

)2 ∞∑
m=−∞

4π2(ωτD)2km

[(k2
m − (ωτ f )2 + τD/τ ∗

φ )2 + (ωτD)2][k2
m + τD/τ ∗

φ ]

×
(

1 − τ

τD
(k2

m − (ωτ f )
2 + τD/τ ∗

φ )

)
, (16)

where km = 2π(m + 2φ/φ0) (φ = ĀL is the static magnetic flux), τD = L2/D is the
diffusion time, and τ f = L/vF is a ballistic timescale. By neglecting ballistic parameters in
equation (16)—i.e., τ/τD → 0 and ωτ f = ωτD

√
τ/τD → 0—we recover the earlier result

for I0 given by Kravtsov and Yudson [5]. Compared with the results for the diffusive limit [5],
we basically encounter new parameters τ/τD on considering ballistic effects.
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Figure 1. The amplitude I (1) of the first harmonic of I0(φ) in units of Cβ |e|/τD for a weakly time-
dependent field φω � φ0 and different ‘ballisticities’ τ/τD = 0.5 (thick solid curve), τ/τD = 0.1
(thick dashed curve), and τ/τD = 0 (dashed curve [5]). τ ∗

φ was chosen to be 10τD for all cases.

Since I0 is periodic with a period φ0/2, the Fourier components I (n) of I0 are often the
quantities under study;

I0(φ) = Cβ

|e|
τD

∑
n

I (n) sin

(
4πn

φ

φ0

)
. (17)

In figure 1, we plot the amplitude of the first harmonic I (1) of I0(φ) using equation (16). In
contrast with the current for the diffusive limit [5], i.e. τ/τD = 0, I (1) for finite τ/τD shows
oscillation behaviour. A new timescale τ f = L/v f appears associated with the oscillation
period �ω = 2π/τ f . Note that when we take into account ballistic effects (i.e., τ/τD �= 0),
we cannot neglect ωτ f (=ωτD

√
τ/τD) in the denominator of equation (16), which gives

oscillating behaviour in figure 1. Intuitively, this oscillation is due to the fact that the time
period of periodic orbits along the ring matches with that of the applied external field.

Now, let us look at a different regime where the disorder potential is very weak but the
applied field is arbitrarily strong:

1

τ
� ω and

1

τ f
. (18)

For this case, we use perturbation of the electron–impurity scattering term σx/τ with the
parameter 1/ωτ � 1. The leading terms are written as

I (n) ≈ Fn

(
π

φω

φ0
, ωτ f

)
e−nτ f /τ

×
[

sin(nωτ f /4) +
1

ωτ

(
cos(nωτ f /4) + (2/ωτ) sin(nωτ f /4)

1 + (2/ωτ)2

)
+ · · ·

]
, (19)

where

Fn(x, y) = xy J1(16x sin(ny/4)/y). (20)

Here J1 is the Bessel function of order 1.
As shown in figure 2, the first harmonic I (1) of the current may show sign reversal when the

applied field is not too weak. When the magnetic flux φω associated with the time-dependent
field is larger than half the flux quantum, φ0/2, I (1) is in a regime of negative sign depending
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Figure 2. The amplitude I (1) of the first harmonic of I0(φ) in units of Cβ |e|/τD using the high-
frequency approximation 1/τ � ω, 1/τ f . τ f /τ = 0.1 was chosen as a specific case.

on the applied frequency. Interestingly, this is also the condition for the applied field being
able to cause dephasing of electrons efficiently.

The experimental configuration in [4] seems to be promising for the observation of the
ballistic effects that we have discussed here. However, compared with metals, GaAs samples
are more promising as regards showing ballistic effects—where the mean free path is usually the
order of micrometres. Furthermore, well-defined amplitude and frequency are both necessary
for comparisons. In the case of the GaAs samples, an applied field of frequency ω of the order
of several terahertz may clearly show the ballistic effects that we discussed.

In conclusion, we have shown that the mesoscopic electron transport in disordered quantum
wires can be described by a generalized Cooperon equation which coincides in form with the
Dirac equation for massive fermions in a (1 + 1)-dimensional system. Ballistic effects in a
disordered wire are equivalent to the relativistic effects in clean one-dimensional systems.
On the basis of the new Cooperon equation, electric currents in mesoscopic rings induced
by oscillating magnetic fields are calculated. It is predicted that, as a ballistic effect, the DC
component of the induced electric currents will show oscillating behaviour in the domain of
external-field frequency. Furthermore, in the high-frequency regime, the sign of the induced
current can lead to either diamagnetism or paramagnetism, depending on the strength and the
frequency of the field.

Acknowledgments

The author would like to thank C Kim, P Mohanty, L I Glazman, B I Halperin, D Kim, M Das,
F Green, Y D Park, C Lee, M Y Choi, and T Yamamoto for stimulating discussions.

References

[1] Altshuler B L and Aronov A G 1985 Electron–Electron Interaction in Disordered Systems ed A L Efros and
M Pollak (Amsterdam: North-Holland)

[2] Levy L P et al 1990 Phys. Rev. Lett. 64 2074
Chandrasekhar V et al 1991 Phys. Rev. Lett. 67 3578
Reulet B et al 1995 Phys. Rev. Lett. 75 124

[3] Jariwala E M Q et al 2001 Phys. Rev. Lett. 86 1594



Weak-localization and rectification current in non-diffusive quantum wires 7939

[4] Deblock R et al 2001 Preprint cond-mat/0109527
[5] Kravtsov V E and Yudson V I 1993 Phys. Rev. Lett. 70 210
[6] Aronov A G and Kravtsov V E 1993 Phys. Rev. B 47 13 409
[7] Mohanty P et al 1997 Phys. Rev. Lett. 78 3366
[8] Mohanty P 1999 Ann. Phys., Lpz. 8 549
[9] Kravtsov V E and Altshuler B L 2000 Phys. Rev. Lett. 84 3394
[10] See for a review on various roles of the Cooperon, e.g.,

Montambaux G 1996 Quantum Fluctuations (Proc. Les Houches Summer School, Session LXIII) ed E Giacobino
et al (Amsterdam: Elsevier)

[11] See, e.g.,
Bergmann G 1984 Phys. Rep. 107 1

[12] Chakravarty S and Schmid A 1986 Phys. Rep. 140 193
[13] See, e.g.,

Ryder L H 1985 Quantum Field Theory (New York: Cambridge University Press)
[14] The Dyson series solution for the Cooperon including ballistic effects in two dimensions was discussed in a

recent article:
Ater A and Agam O 2001 Phys. Rev. B 63 205101
and originally in
Abrahams E, Anderson P W and Ramakrishnan T V 1980 Phil. Mag. B 42 827
while for a comprehensive study of the ballistic effects in two dimensions, we refer the reader to, e.g.,
Altland A and Gefen Y 1995 Phys. Rev. B 51 10 671


